Le Monde puzzle [#1132]

[This article was first published on R – Xi’an’s Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)


Want to share your content on R-bloggers? click here if you have a blog, or here if you don’t.

A vaguely arithmetic challenge as Le weekly Monde current mathematical puzzle:

Given two boxes containing x and 2N+1-x balls respectively. If one proceeds by repeatedly transferring half the balls from the even box to the odd box, what is the largest value of N for which the resulting sequence in one of the boxes covers all integers from 1 to 2N?

The run of a brute force R search return 2 as the solution

lm<-function(N)
fils=rep(0,2*N)
bol=c(1,2*N)
while(max(fils)<2){ fils[bol[1]]=fils[bol[1]]+1 bol=bol+ifelse(rep(!bol[1]%%2,2),-bol[1],bol[2])*c(1,-1)/2}
return(min(fils))}

with obvious arguments that once the sequence starts cycling all possible numbers have been visited:

> lm(2)
[1] 1
> lm(3)
[1] 0

While I cannot guess the pattern, there seems to be much larger cases when lm(N) is equal to one, as for instance 173, 174, 173, 473, 774 (and plenty in-between).



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook

Favorite

Leave a Comment