The intuition behind Shannon’s Entropy

Now, back to our formula 3.49: The definition of Entropy for a probability distribution (from The Deep Learning Book) I(x) is the information content of X. I(x) itself is a random variable. In our example, the possible outcomes of the War. Thus, H(x) is the expected value of every possible information. Using the definition of expected … Read more The intuition behind Shannon’s Entropy

Forecasting Exchange Rates Using ARIMA In Python

Sep 29, 2018 Nearly all sectors use time series data to forecast future time points. Forecasting future can assist analysts and management in making better calculated decisions to maximise returns and minimise risks. I will be demonstrating how we can forecast exchange rates in this article. If you are new to finance and want to … Read more Forecasting Exchange Rates Using ARIMA In Python

‘I want to learn Artificial Intelligence and Machine Learning. Where can I start?’

I bought a plane ticket to the US with no return flight. I’d been studying for a year and I figured it was about time I started putting my skills into practice. My plan was to rock up to the US and get hired. Then Ashlee messaged me on LinkedIn, “Hey I’ve seen your posts … Read more ‘I want to learn Artificial Intelligence and Machine Learning. Where can I start?’

Object Detection using Deep Learning Approaches: An End to End Theoretical Perspective

Fast RCNN So the next idea from the same authors: Why not create convolution map of input image and then just select the regions from that convolutional map? Do we really need to run so many convnets? What we can do is run just a single convnet and then apply region proposal crops on the … Read more Object Detection using Deep Learning Approaches: An End to End Theoretical Perspective

Image Processing Class (EGBE443) #2 -Histogram

Computing the histogram In this section, the histogram was calculated by implementation of python programming code (Python 3.6). For python 3.6, There are a lot of common modules using in image processing such as Pillow, Numpy, OpenCV, etc. but in this program Pillow and Numpy module was used. To import the image from your computer, … Read more Image Processing Class (EGBE443) #2 -Histogram

Get system metrics for 5 min with Docker, Telegraf, Influxdb and Grafana

Hi all, there is a very quick guide how to configure a system monitoring for one or more servers using a modern stack of technologies like Grafana, Docker and Telegraf with Influxdb. The main goal for this article is to show how to start geting system metrics from your servers quick and easy, without spending … Read more Get system metrics for 5 min with Docker, Telegraf, Influxdb and Grafana

How to get fbprophet working on AWS Lambda

Solving package size issues of fbprophet serverless deployment Adi Goldstein / Unsplash I assume you’re reading this post because you’re looking for ways to use the awesome fbprophet (Facebook open source forecasting) library on AWS Lambda and you’re already familiar with the various issues around getting it done. I will be using a python 3.6 … Read more How to get fbprophet working on AWS Lambda

Machine Learning – Particle Swarm Optimization (PSO) and Twitter

We all live in a world where analyzing a massive set of unstructured data is becoming a business need. And the time we spend on the internet is basically the time we spend on social media. Even our daily life is affected by the people around us. And we are tending to change our opinions … Read more Machine Learning – Particle Swarm Optimization (PSO) and Twitter

Multi-Layer perceptron using Tensorflow

Sep 11, 2018 In this blog, we are going to build a neural network(multilayer perceptron) using TensorFlow and successfully train it to recognize digits in the image. Tensorflow is a very popular deep learning framework released by, and this notebook will guide for build a neural network with this library. If you want to understand … Read more Multi-Layer perceptron using Tensorflow

Diving into K-Means…

Sep 9, 2018 We have completed our first basic supervised learning model i.e. Linear Regression model in the last post here. Thus in this post we get started with the most basic unsupervised learning algorithm- K-means Clustering. Let’s get started without further ado! Background: K-means clustering as the name itself suggests, is a clustering algorithm, … Read more Diving into K-Means…

3 approaches for backtesting historical data

Reading and processing data for statistical and quantitative analysis in trading Sep 8, 2018 Anyone interested in the statistical analysis of financial markets has the need to process historical data. Historical data is needed in order to backtest or train: Quantitative trading. Statistical trading. Price action replay/walkthrough. Each need comes from different goals. 3 examples on … Read more 3 approaches for backtesting historical data

Microsoft Big Data Overview

https://academy.microsoft.com/en-us/professional-program/tracks/big-data/ Block 1 – Data Fundamentals Learn data science basics. Explore topics like data queries, data analysis, data visualization and how statistics informs data science practices. Please choose from Course 2a or Course 2b to complete the unit. Course 1: Microsoft Professional Program: Introduction to Big Data Course 2a: Analyzing and Visualizing Data with Power … Read more Microsoft Big Data Overview

Box Cox Transformation

When we do time series analysis, we are usually interested either in uncovering causal relationships (Does \(X_t\) influence \(Y_{t+1}\)?) or in getting the most accurate forecast possible. Especially in the second case it can be beneficial to transform our historical data to make it easier to extract a signal. A very common transformation is to … Read more Box Cox Transformation